

<u>Для начала работы с отладочными платами LDM-HELPER-MB501-FULL-</u> <u>T2P8 и LDM-HELPER-MCP042RQ256-FULL необходимо наличие следующих</u>

компонентов:

- операционная система Windows (в данном примере рассматривается OC Windows, также пользователи могут работать в среде Linux);
- отладочные комплекты LDM-HELPER-MB501-FULL-T2P8 и LDM-HELPER-MCP042RQ256-FULL;
- инструментальный программный пакет Windows (загрузить в разделе «Поддержка», «<u>Техническая документация и ПО</u>» на официальном сайте **www.multiclet.com**);
- драйвер для микросхемы FTDI, загрузить с http://www.ftdichip.com (если у вас Windows 7 и выше драйвер установится автоматически);
- примеры программ (загрузить в разделе «Поддержка», «<u>Техническая документация и ПО</u>» на официальном сайте <u>www.multiclet.com</u>).
- Опционально: IDE Geany с плагином mc-dbg. Установку можно произвести вручную при помощи нашего инсталлятора или вручную согласно инструкции по программному обеспечению. Установочный комплект можно загрузить в разделе «<u>Техническая</u> <u>документация и ПО</u>» на официальном сайте <u>www.multiclet.com</u>.
- Программный монитор СОМ-порта.

Расположение используемых в данной инструкции разъемов и

индикаторов:

Рис 1. Расположение используемых в данной инструкции разъемов и индикаторов:

- 1) Разъем ЈТад.
- 2) Разъем Uart.
- 3) Светодиоды, подключенные к порту А.
- 4) Питание.
- 5) Кнопка включения.

Перед началом работы:

1) Установите инструментальный программный пакет.

2) Установите плату LDM-HELPER-MCP042RQ256-FULL на плату LDM-HELPER-MB501-FULL-T2P8.

- 3) Подключите питание к плате.
- 4) Подключите JTag к плате.

Рис 2. Верное подключение ЈТад к плате

5) Подключите mini-usb кабель к отладочной плате в разъем 2 (для работы с Uart).

6) Включите питание нажатием кнопки 5 (см. Рис. 1). На плате загорятся индикаторы VD10 и VD11, а также подсветка на дисплее.

Рис 3. Кабель mini-USB

4) Установите драйвер FTDI. Затем подключите с помощью кабеля mini-USB разъем USB вашего ПК к устройству JTag.

5) Опционально: установите IDE Geany с плагином mc-dbg. Установку можно произвести вручную при помощи нашего инсталлятора или вручную согласно инструкции по программному обеспечению.

6) Перезагрузите ваш ПК.

ПРИМЕР 1.

Программа на С, мигающая светодиодами

Программа расположена в примерах программ в папке *leds_c*. Код программы приведен ниже:

```
/*!< defines 'read / write' permissions</pre>
#define
                                                                                           */
              IO
                     volatile
//Описание структуры портов ввода-вывода
typedef struct
    _IO unsigned IN;
   _IO unsigned OUT;
   _IO unsigned DIR;
   _IO unsigned MSK;
    IO unsigned POL;
    _IO unsigned EDG;
  __IO unsigned BPS;
} GPI0_TypeDef;
//Описание адреса порта А
#define GPIOA
                                ((GPIO TypeDef *) 0xC00F0000)
int main(void) {
       //Конфигурируем 26,28,29,30 пины порта А на вывод
       GPIOA->DIR= 0x3a000000;
       //Выставляем на 26,28,29,30 пинах порта А логическую 1
       GPIOA->OUT= 0x3a000000;
       while(1){
              unsigned i;
              //Цыкл задержки
              for(i=0;i<0xffff;i++);</pre>
              //Моргаем светодиодами
              GPIOA->OUT= GPIOA->OUT^0x3a000000;
       }
       return 0;
}
```

Компиляцию и загрузку программы можно выполнить при помощи командной строки или через IDE Geany с плагином mc-dbg.

Вариант 1. Компиляция и загрузка примера 1 через командную строку.

1) Соберите объектный файл leds.c из папки с примерами программ при помощи команды mc-lcc. Пример команды:

mc-lcc –lccdir=C:\bin –Wl-M –g –Wa—arch=MCp042R100102 –target=mcp –c 'C:\examples\leds_c\leds.c' –o 'C:\examples\leds_c\leds.o'

где C:\bin - путь до папки с файлом mc-lcc, C:\examples\ - путь до папки с примерами программ.

2) Соберите бинарный файл при помощи mc-ld. Пример команды:

mc-ld 'C:\examples\crt0.o' 'C:\examples\leds_c\leds.o' -T C:\examples\script.txt - output='C:\examples\leds_c\leds.imagebin'

3) Загрузите бинарный файл на плату при помощи mc-jtagloader. Пример команды:

mc-jtagloader 'C:\examples\leds_c\leds.imagebin'

В процессе загрузки программы на плату будет производиться мигание светодиодами.

4) Перезагрузите плату при помощи нажатия кнопки RESET.

Если светодиоды продолжают мигать - всё сделано верно! В случае возникновения вопросов обращайтесь в службу поддержки по адресу <u>www.multiclet.com</u>.

Вариант 2. Компиляция и загрузка примера 1 через IDE Geany.

В связи с тем, что текущая версия компилятора mc-lcc не генерирует отладочную информацию, отладка программ, написанных на C, временно недоступна. Следите за выходом новых версий компилятора и отладчика на нашем сайте <u>www.multiclet.com</u>.

Прежде всего, при первом запуске IDE Geany, необходимо активировать плагин MC-DBG и настроить его.

Инструкция по настройке IDE Geany с плагином MC-DBG при первом

запуске, созданию и настройке проектов:

- 1) Запустите Geany с помощью ярлыка на вашем рабочем столе
- В главном меню выберите пункт Инструменты/Менеджер модулей и активируйте модуль MC-DBG (см. Рис 4). После успешной активации откройте вкладку MC-Files на боковой панели и MC-DBG на нижней панели.(см. Рис 5).

-

ģ	🦉 Модул	и	×
ſ	При запуск	се загружать следующие м	одули:
	Активный	Модуль	Описание
		MC-DBG	MultiClet debugger
		Генератор классов	Создает файлы исходного кода для новых типов кл
		Действия по сохранению	Данный модуль предлагает различные действия дл
		Просмотр файлов	Добавить просмотр файлов на боковую панель.
		Разделить окно	Разделяет окно редактирования на два отдельных
		Символы HTML	Вставляет символы HTML как "&".
		Экспорт	Экспортировать текущий файл в различные форматы.
1	Подробн	ее о модуле:	Справка Параметры
	Модуль: Автор(ы Имя файл	MC-DBG 1.0): Chemodanov Yelisey <y. na: C:\Program Files\Geany\</y. 	.chemodanov@multiclet.com> Jib\MC-DBG-win-32.dll QK

Рис 4. Окно Менеджера модулей с активированным плагином МС-DBG

😽 Ge	any												X
<u>Ф</u> айл	Правк	а П <u>о</u> иск	<u>В</u> ид	<u>Д</u> окумент	Про <u>е</u> кт	<u>С</u> борка	<u>И</u> нструмен	ты Спр <u>а</u> вка					
	-		•		6			*	4	Receire			»
Созда	т» (Month		Сохранить	Сохранит	B BCE I I	восстановить	э закрыть	Паза	ад вперед	1		
• До		iect bere	s Ľ										
	rnew pro	ject nere											
CTZ	атус		,					N		Au			
Компи	ілятор	Generate	i makef	ile Make dea	n Mak	e U	pload	Run	Step in	Step over	»	Cell0	~
Сооби	цения	Watches	Conse	ole									
		watches	Consi										
MC-	DBG									<- Decim	al	~	
Это Gea	any 1.23	.1.											

Рис 5. Вид окна Geany после успешной активации плагина МС-DBG

- 3) В контекстном меню элемента *Add new project here* выберете пункт *New*. Создайте новый проект. Если данная операция была выполнена успешно, его название отобразится в списке текущих проектов MC-Files вместо элемента *Add new project here*.
- 4) Нажмите правой кнопкой мыши на название вашего проекта для вызова контекстного меню. Выберите вкладку *Properties*. Во вкладе *Files* при помощи кнопки *Add* добавьте к проекту файлы *crt0.o* и *leds.c*. Включенные файлы в проект отобразятся в списке согласно порядку их линковки. При сборки проектов написанных на С, первым всегда должен линковаться файл *crt0.o* (кнопками Up и Down установите *crt0.o* на первое место в списке) (см Рис. 6).

🤨 M.	S-Project Options	
Files	Files Include directories	
Build	Files C:/Documents and Settings/DasA2/Рабочий стол/leds_c/crt0.o C:/Documents and Settings/DasA2/Рабочий стол/leds_c/leds.c	2
		3
	OK Cancel	

Рис 6. Вид окна Geany Properties после успешного добавления файлов из текущего примера.

- 1 Список линкуемых файлов.
 - 2 Кнопка Add
 - 3 Кнопки Up и Down
- 5) Перейдите во вкладку Build и настройте опции для ассемблера, компилятора С и линкера (см Рис. 7, Рис. 8 и Рис. 9). Во вкладке *С Compiller* в опцию -lccdir= необходимо вписать путь до папки MultiClet/SDK/bin (например -lccdir=C:/MultiClet/SDK/bin). После успешной настройки примените их нажатием кнопки ОК.

👳 M	S-Project Options	
Files Libs Build	Build path: C:/MultiClet/ Asembler C compiler Linker	
	Assembler command: mc-as Assembler options:	
	arch=MCp042R 100 102	2
		1 ↓
	ОК	Cancel

Рис 7. Пример настроек опций ассемблера.

🕑 M	S-Project Options
Files Libs Build	Build path: C:/MultiClet/
	C compiler command: mc-lcc C compiler options:
	-WT-g -Waarch=MCp042R100102 -lccdir=C:/MultiClet/SDK/bin
	↑ ↓
	OK Cancel

Рис 8. Пример настроек опций компилятора С.

🥶 M	S-Project Options
Files Libs	Build path: C:/MultiClet/
Build	Asembler C compiler Linker
	Linker command: mc-ld
	Linker options:
	-
	1
	•
	OK Cancel

Рис 9. Пример настроек опций линкера.

6) Убедившись, что ПК подсоединен к плате по JTag, Выполняете компиляцию кнопкой Make и загрузку на плату кнопкой Upload. Кнопки располагаются на панели MC-DBG(см. Puc 10).

Сообщения	
Watches Console	
Заметки	
MC-DBG	

Рис 10. Расположение кнопок Make и Upload на панели MC-DBG.

7) После успешной загрузки, перезагрузите плату при помощи нажатия кнопки RESET.

Если светодиоды продолжают мигать - всё сделано верно! В случае возникновения вопросов обращайтесь в службу поддержки по адресу <u>www.multiclet.com</u>.

ПРИМЕР 2.

Эхо сервер на ассемблере для Uart

Программа расположена в примерах программ в папке *UartExo_asm*. Код программы приведен ниже:

.alias .alias .alias .alias .alias	UARTØ_CR UARTØ_ST UARTØ_BDR UARTØ_DATA	0xC0000108 0xC0000104 0xC000010C 0xC0000100					
.alias .alias .alias .alias .alias .alias .alias .alias .alias	GPIOC_DATA GPIOC_IN GPIOC_OUT GPIOC_DIR GPIOC_POL GPIOC_POL GPIOC_EDG GPIOC_BPS Get_byte 2	0xC01F0200 0xC00F0200 0xC00F0204 0xC00F0208 0xC00F020C 0xC00F0210 0xC00F0214 0xC00F0218	;no	use	in	the	future
.text							
start:	jmp initUART0 getl 0xC00 wrl @1, GPIOC getl 0x1A wrl @1, UART0	_BPS _BDR					
complete							
;;;;; (initUA	Configurate Ua RT0: jmp MainLoop getl 0x000000 wrl @1, UART0 getl 0x000000 wrl @1, UART0 te	ort ;;;;; 0A _DATA 03 _CR					
;RXD ha Rxd_in jm comple	andler t: p buf_TXD rdl UART0_DAT setl #Get_byt te	A e,@1					
;test buf_TXI	FIFO on full D: rdl UART0_ST getl 0x000002 and @1, @2 jne @1, buf_T je @2, Send_b te	00 XD yte					

;Send inverse byte Send_byte: jmp MainLoop getl #Get_byte wrl @1, UART0_DATA complete ;;Loop MainLoop: rdl UART0_ST getl 0x0000001 and @2,@1 je @1, MainLoop jne @2, Rxd_int complete

В параграфах *start* и *initUART0* происходит инициализация Uart. В параграфе *Rxd_int* происходит чтение данных с Uart. В параграфе *buf_TXD* производится контроль на переполнение выходного сдвигового регистра. В параграфе *Send_byte* прочитанный байт возвращается по Uart. В параграфе *MainLoop* производится контроль статусного регистра Uart на предмет поступления новых данных.

Компиляция и загрузка примера 1 через командную строку.

Производится по аналогии с 1 примером за исключением первой команды (вместо неё вызываем *mc-as*). Примеры команд:

mc-as —arch=MCp042R100102 C:\UartExo_asm\exo.asm mc-ld C:\UartExo_asm\exo.o mc-jtagloader C:\UartExo_asm\image.bin

Компиляция и загрузка примера 1 через IDE Geany.

Производится согласно инструкции по настройке IDE Geany с плагином MC-DBG при первом запуске, созданию и настройке проектов, приведенной выше. В проект следует включить только файл exo.asm.

<u>Примечание:</u> для получения дополнительных сведений о регистрах интерфейса UART воспользуйтесь руководством по эксплуатации процессора R1 (загрузить в разделе «Поддержка», «Техническая документация и ПО» на официальном сайте <u>www.multiclet.com</u>).

Для получения данных посредством UART на ПК необходимо:

- подключить отладочную плату к компьютеру при помощи mini-USB кабеля

- скомпилировать проект и загрузить его на плату

- воспользоваться программой монитор СОМ-порта

Параметры для настройки монитора СОМ-порта:

- скорость работы 38400 бит/с
- размер одной посылки 8 бит
- количество стоп битов 1
- контроль четности отсутствует

Для удобства отображения информации при выводе памяти данных рекомендуется выравнивание по 32 байта в линии, сгруппированных по 8 байт.

Отладочный комплект LDM-HELPER-MCP042RQ256 предназначен для ознакомления с реализацией мультиклеточной архитектуры и тестирования реконфигурации клеток.

Рекомендации по эксплуатации отладочного комплекта с микропроцессором MULTICLET R1-1.

Мультиклеточный процессор MULTICLET R1, в соответствии с классификацией Леонида Черняка (см. <u>статью</u>), относится к динамически реконфигурируемым, однако это процессор на кристалле и, вследствие независимости машинного кода, перераспределение ресурсов (клеток) в отличие от существующих аналогов на FPGA происходит без остановки или перезагрузки процессора и без потери информации. Таким образом, MULTICLET R1 представляет собой новый класс динамически реконфигурируемых процессоров. В настоящее время в мире не существует аналогов микропроцессоров на кристалле с реализованной функцией динамической реконфигурации (Подробнее читайте в <u>статье</u>). Примеры программ для освоения данной функции приведены в разделе «<u>Техническая</u> документация и ПО» на официальном сайте <u>www.multiclet.com</u>.

- Плата не предназначена для работы с внешним ПЗУ (эта возможность будет предоставляться в комплекте с процессором MULTICLET R1). На плате PROM не доступна, в связи с чем, работа DMA с PROM невозможна. Работа с PROM возможна при ее корректном подключении к процессору MULTICLET R1-1 (см. <u>Руководство по</u> эксплуатации для MULTICLET R1).
- Использование прерываний находится в состоянии тестирования, рекомендуем смотреть изменение в документации.
- При контроле чтения и записи все параграфы должны иметь каноническую форму (чтение, модификация, запись).
- Рекомендуется использовать Uart на LDM-HELPER-MB501-FULL-T2P8, помеченный на Рис. 1, как разъем 2.

Для продолжения ознакомления с процессором MULTICLET R1 мы рекомендуем вам изучить <u>Руководство пользователя по программному обеспечению</u> для MULTICLET R1 и <u>Руководство по эксплуатации для MULTICLET R1</u>.